
- - - Quicksort
Anton Gerdelan <gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie

Assign. Common Probs
• bad time mgmt (generally we are wrong by x3)

• do basic parts and submit on day 1 -> pressure off, resubmit after improving, asking Qs

• extensions are not free time - you have other work later -> compounds problems

• original hash  
 
int index = first_hash(name, M);

• searching for name/key  
 
(0 == strcmp(hash_table[index], name))

• finding gap for storing - check if first index in string is empty, or use boolean flags  
 
('\0' == hash_table[index][0])

• second hash offsets (instead of linear probing by +1, linear probing by +second hash)  
 
while (use one of the above here) {  
 index = index + second_hash(name, M);  
}

Divide-and-Conquer 
Algorithm Design

Merge sort - from Cormen et al. "Algorithms"

1. divide

2. conquer 3. combine

Quicksort
• C.A.R. Hoare, ~1960

• Divides list into 2 parts

• Break point is not always middle as in merge sort

• O(n log(n)) on average with v short inner loop

• O(n^2) worst

• Sorts in place.

• Tricky to tune/tweak - if done right is most likely fastest general
sort

Quicksort Algorithm
• Divide: rearrange array into 2 subarrays

• A[p..q-1] and A[q+1r]

• A[q] is the pivot. It can be any element.

• All elements left of pivot must be less than or
equal to A[p]

• All elements right of pivot must be greater than
A[p]

Quicksort Algorithm

• Conquer: Sort subarrays by recursively calling
quicksort()

• Combine: Entire array is already sorted in place.
No merging is required.

Quicksort Pseudo-Code
Listing

 QUICKSORT(A, p, r)  
1 if p < r  
2 q = PARTITION(A, p, r)  
3 QUICKSORT(A, p, q - 1)  
4 QUICKSORT(A, q + 1, r)

• A is array. p and r are first and last (inclusive) indices. q is
pivot index.

• Recursion is fairly clear
• Line 1 halts recursion when array can't be further

subdivided
• Writing the partition() function is the key

Partitioning Pseudo-Code
Listing

 PARTITION(A, p, r)  
1 x = A[r]  
2 i = p - 1  
3 for j = p to r - 1  
4 if A[j] <= x  
5 i = i + 1  
6 swap(A[i], A[j])  
7 swap(A[i + 1], A[r])  
8 return i + 1

loop once over
range 
j is current index 
i is previous index 
 
move smaller values
leftwards 
swap first larger
value with end value  

Quicksort
• Lots of redundant swapping with self

• Partitioning vaguely resembles elementary sorts

• likely to sort entire array on first pass

• Efficiency depends on choice of pivot.

• Decide pivot based on data:

• nearly sorted

• completed random

• sorted but in reverse

Reading
• Cormen et al. Algorithms has the clearest explanation of

quicksort.

• Every algorithms textbook has a chapter on quicksort.

• Lots of extensions/tweaks to quicksort in published papers
and code.

• I had a different algorithm/code in the course I took

• this one has fewer operations

• you might find better/clearer/optimised code

Blackboard Working
• I'll go over an example that you can find in the

Cormen et al book.

• This might take a while

• Worth testing your understanding of all algorithms
by working through on paper

• "your pencil is the debugger" + some diagrams

Future Stuff
• Some sorting problems tomorrow (exam-type

questions)

• Or we can do some more live coding?

• requests?

• Sorting assignment

• Trees/Graphs/Heaps

• Searching algorithms

